
Executive Summary 

A genome-wide polygenic score (GPS) is a 
metric of inherited susceptibility that can 
be used to identify individuals with an 
increased risk of common, complex diseases 
by incorporating information from numerous 
sites in the genome. 

Recently, Color has developed the Coronary 
Artery Disease Genetic Score, which uses  
a cost-efficient pipeline to assess an 
individual’s GPS for developing coronary 
artery disease (CAD). 

Color’s clinical GPS pipeline uses low coverage 
whole genome sequencing (lcWGS) data 
accompanied by the imputation of common 
genetic variants. 

In this study, we demonstrate that data 
generated with lcWGS followed by imputation 
is an alternative approach to genotyping 
arrays and clinically validate the end-to-
end ability of Color’s platform to accurately 
and reliably calculate a GPS value for CAD in 
clinical samples from diverse populations.
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Introduction
Coronary artery disease (CAD) is a cardiovascular disorder caused by the build-up of plaque in the arteries, leading 
to a narrowing or blockage of the artery itself. Despite significant improvements in treatment and prevention, CAD 
continues to be the leading cause of morbidity and mortality worldwide.1,2 Thus, identifying individuals at an increased 
risk for CAD who should undergo regular screening is a crucial step towards prevention and lowering the prevalence 
of this disease.
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The initial set of risk factors associated with CAD 
were established in the Framingham Heart Study 
which was conducted in the early 1960s.3,4 Since 
then, there have been many additional risk factors 
linked to CAD, including some that are under an 
individual’s control, such as diet and exercise, and 
others that are innate, such as age and sex.5

Over the past decade, technological advancements in 
the field of genetics have led to a better understanding 
of the heritability and other genetic components of 
complex diseases. Studies analyzing hundreds of 
thousands of people and millions of genetic variants 
have indicated that the genetic components of CAD 
can sometimes even outperform traditional risk factors 
in predicting the development of CAD, demonstrating 
the important role that genetics can have in clinical 
practices.6,7 For example, recent studies estimate the 
heritability of CAD to range between 40 and 50%.8 
Additionally, it has been estimated that about 8% of 
the population has approximately triple the average 
risk for CAD due to polygenic variation alone.8–11 When 
the genetic predisposition of an individual is combined 
with their non-genetic risk factors, it can reveal an 
even higher risk of developing a complex disease.12

In order to identify those who could benefit from early 
detection and treatment, Color has developed the 
Coronary Artery Disease Genetic Score to measure an 
individual’s genetic susceptibility to develop CAD.9 The 
workflow to calculate this score includes the generation 
of an individual’s genome-wide polygenic score (GPS), 
also known as a genetic risk score (GRS) or polygenic 
risk score (PRS). A GPS examines the cumulative effect 
of a large number of  genetic variants associated with 
a certain disease by aggregating the effect of all of 
those variants into a single score. Historically, SNP 
array genotyping has been the technology used to 
generate an individual’s GPS.13,14 Here, we present an 
alternative approach using low coverage whole genome 
sequencing (lcWGS), a method that samples locations 
across the entire genome at low depth (~0.4x). 

GPS is calculated by combining genetic signals from 
hundreds to millions of locations throughout the 
genome that are associated with a complex disease. 
The genetic locations are first identified as part of a 
genome-wide association study (GWAS), a study that 
examines variation across the genome in an attempt 
to identify genetic risk factors for diseases that 
are common in a population. GWAS studies include 

thousands of individuals (both with and without the 
disease in question) and millions of genetic variants, 
yielding the individual effect of each variant for a given 
complex disease, such as coronary artery disease.15,16 

Color’s clinical GPS workflow not only leverages millions 
of genetic variants that have already been established, 
tested, and validated in a previous GWAS, but does so 
by using lcWGS, which is a cost-effective sequencing 
approach. This process is then followed by state of 
the art imputation methods that statistically infer 
missing information that occurs as a result of sampling. 
Furthermore, to address the lack of diversity that has 
plagued GWAS research in the past, Color’s clinical GPS 
pipeline ensures the GPS are inclusive of populations 
with different ethnic backgrounds and thus can be 
utilized to help individuals and their healthcare providers 
proactively decide what health and lifestyle plan is most 
suitable for the individual, regardless of their ethnicity.

In addition to being cost effective, lcWGS does not suffer 
from the inherent biases in SNP genotyping arrays. 
SNP arrays use only a selection of pre-ascertained SNP 
sites, which are often biased towards one population 
leading to a distortion of the genome-wide distribution 
of allele frequencies.17,18 For example, it is possible to 
observe genetic variations in individuals that did not 
previously exist in the reference population used to 
design the SNP array. This means the variants will not 
be reliably captured in the SNP array, resulting in a loss 
of useful genetic information for the individuals from 
the non-reference population. These biases can further 
be exacerbated during imputation and can have an 
impact on downstream analysis. Moreover, the effects 
of SNP selection bias are not identical across arrays. For 
instance, GPS trained and validated on one genotyping 
array may not be as predictive on another genotyping 
array.9,19 lcWGS followed by imputation overcomes 
this issue by randomly sampling across the entire 
genome so that variants are captured independently. 
Additionally, new variants that are discovered can 
be easily added to the imputation procedure. Since 
Color’s clinical GPS pipeline takes advantage of lcWGS, 
it is less vulnerable to the aforementioned biases. 

The Coronary Artery Disease Genetic Score is 
generated through the Color clinical GPS workflow 
using the technique of imputation off of lcWGS data. 
In this study, we describe the methodology of the 
workflow and validate the Coronary Artery Disease 
Genetic Score for use as a clinical genetic test.
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Dataset
To validate the performance of the CAD GPS on lcWGS, 
we compared GPS scores from lcWGS and from SNP 
genotyping using the Global Diversity Array (GDA) 
from Illumina for a selected set of 113 individuals as 
a benchmark dataset. Individuals were selected to 
encompass a range of GPS scores, in order to assess 
the validity of the end-to-end pipeline across the 
spectrum. 22 individuals from the validation cohort 
were further selected to assess the reproducibility 
(n=10) and repeatability (n=12) of the study. This 
dataset included both saliva and peripheral blood 
specimen types to ensure similar accuracy for 
imputation across specimen types. To ensure diversity, 
this dataset included equal representation of both 
sexes as well as samples from diverse continental 
and subcontinental ancestral populations based on 
genetic ancestry results generated by ngsadmix.20

Methods
Generation of sequencing data
Genomic DNA was extracted from saliva or peripheral 
blood using standard laboratory methods for the 
Color assay. Each batch contained at least one 
no-template control (NTC) sample and two cell line 
positive controls. Next generation sequencing (NGS) 
libraries compatible with the Illumina platform were 
generated and sequenced at low coverage on an 
Illumina NovaSeq. The data was initially processed 
through the Color bioinformatics pipeline and quality 
control procedures (Figure 1, step 1). Sequencing base 
call files were converted to FASTQ using bcl2fastq2 
(Illumina, San Diego, CA) and reads were aligned to the 
human genome reference GRCh37 with BWA-MEM.21 
Duplicates and low quality reads were then removed. 
Genotype likelihoods were calculated using bcftools 
v1.822 mpileup algorithm at each of the biallelic SNP 
loci in the imputation SNP loci that were covered by 
one or more sequencing reads. As part of the quality 
control for lcWGS data, we used a genome-wide 
sequencing coverage criteria of ≥0.4X as well as ≥0.2X 
sequencing depth across all autosomes as calculated 
by GATK (CollectWgsMetrics tool) (Figure 1, step 2).23 

Genotype Imputation
BAMs generated from the lcWGS sequencing of the 
benchmark dataset were used to impute genotypes. 

Genome-wide genotypes at approximately 22 million 
sites were imputed using GLIMPSE v1.0.0, a software 
tool for large-scale imputation of low coverage 
sequences.24 To capture the global haplotype 
diversity, the 1000 Genomes Project (1KGP) was used 
as the imputation reference panel (Figure 1, step 
3).25 Differences in genotype imputation accuracy 
vary in different populations due to haplotype block 
conformation and available reference data. To ensure 
that there were no idiosyncratic imputation errors 
and/or biases towards a specific population, the 
benchmark dataset was grouped into five populations 
based on their genetic ancestry where an individual 
belonged to a non-Admix group if more than 70% 
of their genetic make-up was from that group. This 
resulted in five continental groupings of individuals, 
namely, African (AFR), East Asian (EAS), European (EUR), 
South Asian (SAS) as well as Admixed individuals. 

Imputation accuracy of the lcWGS data was then 
separately measured for each continental group 
mentioned above by calculating coefficient of 
determination (r2) by comparing imputed results 
for the benchmark dataset against known, 
externally confirmed non-imputed genotypes 
of the same individuals (~1.3M sites).

Figure 1: Color’s clinical GPS pipeline design. lcWGS 
data is collected and processed through distinct steps to 
produce a GPS. 
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Color’s clinical GPS workflow

Calculating raw GPS
To identify individuals at a higher risk of developing 
CAD, Color’s Clinical GPS pipeline uses variants 
that, in a prior study, were found to be associated 
with CAD risk.8 Raw GPS for CAD were calculated 
by summing risk alleles (OR and BETAs), which are 
weighted by effect sizes derived from prior GWAS 
results (Figure 1, step 4). Thus, GPS for an individual 
i was calculated using the following equation:

Where 0 ≤ dosage(i, j) ≤ 2 is the effect allele dosage 
for each variant j associated with CAD and β( j) is the 
marginal effect size of variant j. The set of variants j 
were previously selected based on their demonstrated 
ability to accurately predict and stratify disease risk.8

Ancestry-based GPS normalization
The observed range of raw GPS will vary among 
individuals depending on their genetic ancestry (Figure 
2A).26 To address this, a normalization procedure for 
raw GPS was established. First, the LASER program 
was used to obtain ancestry principal components 
(PCs) by projecting individuals’ genetic data on a set 
of built-in ancestry reference panels constructed using 
4259 ethnically diverse samples (Figure 1, step 5).27

Once the ancestral PCs were obtained for each 
individual, an ancestry-based z-score normalization was 
subsequently applied to the raw scores). To construct a 

normalizer, we used a large diverse cohort of 25,016 non-
related individuals from the Color database to generate 
a PCA-based linear model for the disease of interest 
that explains the contribution of each PC to variation 
in raw GPS. Normalized GPS was then calculated by 
taking the standardized residual of the score after 
corrections for the first 10 PCs. Lastly, we ensured the 
distribution of corrected GPS has a mean of ~0 and 
standard deviation of ~1 (Figure 1, Step 6). Thus, after 
normalization, the adjusted GPS (independent of genetic 
ancestry) follows a normal distribution (Figure 2B). 

Validation study
The performance of Color’s Clinical GPS pipeline was 
assessed by 1) comparing the raw GPSs calculated 
for the individuals in the benchmark dataset using 
both lcWGS and the gold standard method of SNP 
array genotyping and 2) confirming normalized 
GPS followed a normal distribution using a large, 
separately curated cohort of diverse individuals. 

SNP array genotyping data was generated 
using the Global Diversity Array (GDA) from 
Illumina. This array includes approximately 1.9 
million variants and was developed to perform 
well across 26 diverse populations.  

To determine raw GPS accuracy, the coefficient 
of determination (r2) was calculated between the 
two raw GPS for CAD. It is important to note that 
calculated GPS are not expected to be an exact 
match due to variability in sequencing coverage of 
disease-specific SNP loci. In addition, to measure the

Figure 2: A) Distribution of raw GPS scores of the normalizer cohort stratified by continental group B) Distribution of 
normalized GPS scores of the normalizer cohort stratified by continental group
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Results and Discussion
In this study, we demonstrate that Color’s GPS pipeline 
can be used as a clinical assessment of genetic 
susceptibility for CAD and is highly concordant with 
other common methods of calculating GPS, including SNP 
arrays. The validation studies showed that lcWGS can be 
used for genome-wide imputation and GPS calculation as 
accurately as SNP genotype arrays and that GPS scores 
can be normalized for use across diverse populations.   

lcWGS sequencing and genotype imputation
The benchmark dataset used in this validation study 
went through Color’s lcWGS pipeline, passed quality 
controls, and underwent imputation across 22 million 
sites in the genome. Using the array data as a truth 
set, imputation accuracy was examined separately 
per continental population using squared Pearson’s 
correlation coefficient, and all samples across all 
populations and specimen types had an imputation 
accuracy of r2≥ 0.95 (Figure 3A). Given the overall high 
concordance of the imputation accuracy, we conclude 
that lcWGS (with at least 0.4x coverage) followed by 
imputation performs similarly to SNP array genotyping 
and can be considered as a valid alternative approach.

Furthermore, we observed no significant difference in 
imputation accuracy based on specimen type between 
saliva (n=70, mean r2= 0.970) vs blood (n=7, mean 
r2= 0.971). However, we were only able to ascertain 
this finding in the European population due to small 
sample size and potential batch effects (Figure 3B).

Figure 3: A) Imputation accuracy for benchmark dataset per 
continental population. SNP array genotype calls were used 
as the gold standard. B) Imputation accuracy for blood and 
saliva specimen types. 
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GPS calculation
Similar to the imputation assessment, we assess the 
validity of raw GPS scores by calculating square of 
Pearson’s correlation coefficient between the raw 
GPS calculated from the SNP array and the raw 
GPS calculated from Color’s clinical GPS pipeline for 
our benchmark dataset (r2≥ 0.992; Figure 4A). Our 
results demonstrate that there are no significant 
differences between the raw GPS observed from 
Color’s GPS pipeline than that of SNP arrays.

Moreover, we examined the reproducibility and 
repeatability of our end-to-end analysis by looking 
at 10 and 12 samples that were repeated intra- and 
inter-run through the end-to-end process, respectively 
(Figure 4B and C). Results showed that not only was 
there a high correlation among repeated samples 
after imputation, but also high correlations of raw 
GPS in both experiments (r2≥ 0.98 and r2≥ 0.99, 
intra-run and inter-run, respectively). It is important 
to note that some variations in reproducibility and 
repeatability experiments are expected due to 
differences in the variants that were captured in lcWGS 
itself as well as variations caused by imputation.

Figure 4: A) Correlation of raw GPS scores generated  
using lcWGS or SNP array, stratified by continental group.  
B) Reproducibility and C) repeatability of raw GPS scores 
across multiple runs of the same samples with lcWGS.
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GPS Normalization
Historically, many GPS scores were developed for use 
in European populations.28,29 Thus, the distribution 
of the raw GPS for individuals from non-European 
populations might differ from the ones observed 
in Europeans (Figure 2A). This makes it difficult to 
correctly interpret the raw scores for individuals from 
diverse ethnic backgrounds since two similar raw 
scores demonstrate different levels of risks due to the 
underlying population distribution. To address this 
inequity, we developed a GPS normalization procedure 
based on genetic ancestry that allows for GPS 
calculation in non-European individuals (see Methods 
section). This GPS normalization determines how the 
distributions of raw GPS can be made comparable with 
respect to genetic ancestry as a confounding factor.

Summary statistics generated for each continental 
population from a large, separately curated 
cohort showed that the normalized GPS followed 
a normal distribution. The normalized GPS for 
each continental population had a mean of 0±0.1 
and standard deviation of 1±0.1 (Table 1). 

Limitations
In order to successfully use GPS in practice, it is crucial 
to understand the limitations of GPS and be vigilant in 
its interpretation. For instance, one of the shortcomings 
of GPS is that variability in a score can be heavily 
influenced by differences in population structure 
and allele frequency variability across distinct ethnic 
groups. For instance, people with African ancestry 
tend to have greater variation in their genomes and 
thus more complex inheritance patterns compared to 
individuals with European ancestry.30–32 These variations 
across populations limit GPS transferability and reduce 

its clinical value in non-European populations. Thus, 
without effective normalization and incorporating 
genetic ancestry, GPS calculated in non-European 
populations cannot accurately estimate risk and 
could raise healthcare disparity concerns.29,33

Moreover, GPS only estimates the contribution of 
the common single-nucleotide variants (usually 
1+% population frequency) in individuals, whereas 
other types of variation (such as rare pathogenic 
alleles which are typically excluded) can additionally 
impact genetic risk of certain individuals.34,35

Despite the aforementioned constraints, GPS 
nevertheless has the potential to be incorporated 
into routine medical practice to aid risk stratification 
and optimize clinical care for individuals. 

Conclusion
Over the past few decades, there has been an emerging 
interest in understanding the underlying risk factors 
that are associated with complex diseases such as 
CAD. The promise of such endeavours in practice is 
the ability to prioritize preventative behaviors, such as 
lifestyle changes, prophylactic medication, and increased 
screening. In this study, we validated the ability of Color’s 
clinical GPS pipeline to measure the genetic susceptibility 
of individuals for CAD by comparing its performance 
to that of GPS derived from SNP array genotyping. We 
established that Color’s clinical GPS pipeline, which 
uses lcWGS followed by imputation, can be used as an 
effective alternative approach to genotyping arrays 
when assessing common genetic variants. Furthermore, 
we demonstrated that the GPS calculated for CAD 
using this method are inclusive of populations with 
different ethnic backgrounds (unlike those derived 
from SNP arrays) and thus can help enhance global 
population health by identifying individuals of diverse 
backgrounds at a higher risk of developing CAD. 

Table 1. CAD GPS normalization summary statistics

Population Mean
Standard  
Deviation

South Asian 0.043 1.033

African -0.068 1.017

Admixed 0.028 1.042

East Asian 0.004 0.98

European -0.011 0.925
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